Towards a conjecture of Woodall for partial 3-trees (2024)

Juan Gutiérrez

Abstract

In 1978, Woodall conjectured the following: in a planardigraph, the size of a shortest dicycle is equal to the maximum cardinality of a collection of disjoint transversals of dicycles. We prove that this conjecture is true when the underlying graph is a planar 3-tree.


 1Departamento de Ciencia de la Computación
Universidad de Ingeniería y Tecnología (UTEC), Lima, Perú
E-mail: jgutierreza@utec.edu.pe

1 Introduction and Preliminaries

A directed graph, or digraph,is a pair (V,E)𝑉𝐸(V,E)( italic_V , italic_E ), where V𝑉Vitalic_V is a setof nodes and E𝐸Eitalic_E is a set of ordered distinct pairnodes, called arcs.A directed cycle, or dicycle, in a digraph is a closed directed walk in which the origin and all internal vertices are different.A dicut in a digraph G𝐺Gitalic_G is a partition of V(G)𝑉𝐺V(G)italic_V ( italic_G ) into two subsets, so that each arc with ends in both subsets leaves the same set of the partition,and a dijoin in is a subset of E(G)𝐸𝐺E(G)italic_E ( italic_G ) that intersects every dicut.In 1978, Woodall make the next conjecture.

Conjecture 1 ([12]).

For every digraph, the size of a minimum dicut isequal to the cardinality of a maximum collection of disjoint dijoins.

Woodall’s Conjecture remains one of thebiggest open problems in Graph Theory,but there seems to be few positive results regardingConjecture 1.Feofiloff and Younger, and Schrijver proved independently that Conjecture 1holds for source-sink connected digraphs [6, 10],and Lee and Wayabayashi showed it when the underlying graph isseries-parallel [7].

We are interested in the correspondent dual of Conjecture 1 when the underlying graph is planar.A directed path, or dipath, in a digraph is a dicycle inwhich the origin and end are distinct.Given a digraph, a transversalis a set of arcs that intersects every dicycle of the digraph. A packing is a set of disjoint transversals.We denote by ν(G)𝜈𝐺\nu(G)italic_ν ( italic_G ) the size of a maximum packing in a digraph G𝐺Gitalic_G and by g(G)𝑔𝐺g(G)italic_g ( italic_G ) the length of a shortest dicycle in G𝐺Gitalic_G.It is straightforward to observe that for planar digraphs, every dicut corresponds to a dicycle,and every dijoin corresponds to a transversal in the dual digraph.Hence, by duality, we have the next conjecture.

Conjecture 2 ([12]).

For every planar digraph G𝐺Gitalic_G with at least one dicycle, ν(G)=g(G)𝜈𝐺𝑔𝐺\nu(G)=g(G)italic_ν ( italic_G ) = italic_g ( italic_G ).

A graph is a pair (V,E)𝑉𝐸(V,E)( italic_V , italic_E ), where V𝑉Vitalic_V is a setof vertices and E𝐸Eitalic_E is a set of unordered distinct pair vertices, called edges.In this paper, we are interested in study Conjecture 2 when the underlying graph has bounded treewidith.The concept of treewidth hasbig relevance in the proof of the graph minor theorem by Robertson and Seymour [9]as well as in the field of combinatorial optimization,where a large class of problems can be solved using dynamic programmingwhen the graph has bounded treewidth [1, 3]

Next we give the definition of treewidth.A tree decomposition of a graphG𝐺Gitalic_Gis a pair𝒟=(T,𝒱)𝒟𝑇𝒱\mathcal{D}=(T,\mathcal{V})caligraphic_D = ( italic_T , caligraphic_V ) consisting of a treeT𝑇Titalic_T anda collection 𝒱={VtV(G):tV(T)}𝒱conditional-setsubscript𝑉𝑡𝑉𝐺𝑡𝑉𝑇\mathcal{V}=\{V_{t}\subseteq V(G)\colon t\in V(T)\}caligraphic_V = { italic_V start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ⊆ italic_V ( italic_G ) : italic_t ∈ italic_V ( italic_T ) },satisfying the following conditions:

  1. (T1)

    tV(T)Vt=V(G);subscript𝑡𝑉𝑇subscript𝑉𝑡𝑉𝐺\bigcup_{t\in V(T)}V_{t}=V(G);⋃ start_POSTSUBSCRIPT italic_t ∈ italic_V ( italic_T ) end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_V ( italic_G ) ;

  2. (T2)

    for everyuvE(G)𝑢𝑣𝐸𝐺uv\in E(G)italic_u italic_v ∈ italic_E ( italic_G ), there exists a t𝑡titalic_t such thatu,vVt;𝑢𝑣subscript𝑉𝑡u,v\in V_{t};italic_u , italic_v ∈ italic_V start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ;

  3. (T3)

    if a vertexvVt1Vt2𝑣subscript𝑉subscript𝑡1subscript𝑉subscript𝑡2v\in V_{t_{1}}\cap V_{t_{2}}italic_v ∈ italic_V start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∩ italic_V start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT for t1t2subscript𝑡1subscript𝑡2t_{1}\neq t_{2}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≠ italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,then vVt𝑣subscript𝑉𝑡v\in V_{t}italic_v ∈ italic_V start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT for every t𝑡titalic_t in the path ofT𝑇Titalic_T that joinst1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT andt2subscript𝑡2t_{2}italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.In other words, for any fixed vertex vV(G)𝑣𝑉𝐺v\in V(G)italic_v ∈ italic_V ( italic_G ),the subgraph of T𝑇Titalic_T induced by the vertices in sets Vtsubscript𝑉𝑡V_{t}italic_V start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT that contain v𝑣vitalic_v is connected.

The elements in 𝒱𝒱\mathcal{V}caligraphic_V are called the bags of 𝒟𝒟\mathcal{D}caligraphic_D,and the vertices of T𝑇Titalic_T are called nodes.The width of𝒟𝒟\mathcal{D}caligraphic_D is the numbermax{|Vt|:tV(T)}1:subscript𝑉𝑡𝑡𝑉𝑇1\max\{|V_{t}|\colon t\in V(T)\}-1roman_max { | italic_V start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT | : italic_t ∈ italic_V ( italic_T ) } - 1,and the treewidthtw(G)tw𝐺\mathrm{tw}(G)roman_tw ( italic_G ) ofG𝐺Gitalic_G isthe width of a tree decomposition ofG𝐺Gitalic_G with minimum width.

Graphs with treewidth one are the trees and forests. Graphs with treewidth at most two are the series-parallel graphs [5].Lee and Wakabayashi showed thatConjecture 2 is true for digraphs whose underlying graph is series-parallel.

Theorem 3 ([7]).

Conjecture 2 is true when the underlying graph is series-parallel.

Hence, it seems natural to answer Conjecture 2 forplanar digraphs whose underlying graph has treewidth at most three.

Regarding Problem 4, we have the the next result, due to Lee and Williams.Given two graphs H𝐻Hitalic_H and G𝐺Gitalic_G, we say thatH𝐻Hitalic_H is a minor of G𝐺Gitalic_G if H𝐻Hitalic_H can beobtained from G𝐺Gitalic_G by deletingedges, vertices and by contracting edges.

Theorem 5 ([8]).

Conjecture 2 is true when the underlying graph has no K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e minor.

As series-parallel graphs do not have K4subscript𝐾4K_{4}italic_K start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT-minor,Theorem 5 generalizes Theorem 3.The following observation shows that K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e minor-free graphs hastreewidth at most three,and thus Theorem 5 solves partially Problem4.We will use the following characterization of partial 3-trees given by Arnborg [2].A 3333-tree is a graph obtained from K3subscript𝐾3K_{3}italic_K start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT by successively choosing a triangle in the graph and adding a new vertex adjacent to its three vertices.A partial 3-tree is any subgraph of a 3-tree.It is known that partial 3-trees are exactly the graphs oftreewidth at most 3 [4, Theorem 35].

Theorem 6 ([2, Theorem 1.2]).

The set of minimal forbidden minors for partial 3-treesconsists of four graphs: K5,M6,M8subscript𝐾5subscript𝑀6subscript𝑀8K_{5},M_{6},M_{8}italic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, and M10subscript𝑀10M_{10}italic_M start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT (see Figure 1).

Towards a conjecture of Woodall for partial 3-trees (1)

Towards a conjecture of Woodall for partial 3-trees (2)

Towards a conjecture of Woodall for partial 3-trees (3)

Towards a conjecture of Woodall for partial 3-trees (4)

Observation 7.

Every K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e minor free graph has treewidth at most 3.

Proof.

Let G𝐺Gitalic_G be a K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e minor free graph.Suppose by contradiction that G𝐺Gitalic_G is not a partial 3-tree.By Theorem 6, G𝐺Gitalic_G has one ofK5,M6,M8subscript𝐾5subscript𝑀6subscript𝑀8K_{5},M_{6},M_{8}italic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT or M10subscript𝑀10M_{10}italic_M start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT as a minor.If G𝐺Gitalic_G has a K5subscript𝐾5K_{5}italic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT minor, then it is clear that also has a K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e minor, and we obtain a contradiction.Suppose now that G𝐺Gitalic_G has M6subscript𝑀6M_{6}italic_M start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT as a minor, and supposethe vertices of M6subscript𝑀6M_{6}italic_M start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT areas in Figure 1.Then, by contracting edge u1v1subscript𝑢1subscript𝑣1u_{1}v_{1}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT we obtain a K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e, a contradiction.Suppose now that G𝐺Gitalic_G has M8subscript𝑀8M_{8}italic_M start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT as a minor, and supposethe vertices of M8subscript𝑀8M_{8}italic_M start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT areas in Figure 1.Then, by contracting edges v1v2,v3v4subscript𝑣1subscript𝑣2subscript𝑣3subscript𝑣4v_{1}v_{2},v_{3}v_{4}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and v6v7subscript𝑣6subscript𝑣7v_{6}v_{7}italic_v start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT we obtain a K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e, a contradiction.Finally, let us suppose that G𝐺Gitalic_G has M10subscript𝑀10M_{10}italic_M start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT as a minor, and supposethe vertices of M10subscript𝑀10M_{10}italic_M start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT areas in Figure 1.Then, by contracting edges v1v2,v4v5,u1u5,u2u3subscript𝑣1subscript𝑣2subscript𝑣4subscript𝑣5subscript𝑢1subscript𝑢5subscript𝑢2subscript𝑢3v_{1}v_{2},v_{4}v_{5},u_{1}u_{5},u_{2}u_{3}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and u3u4subscript𝑢3subscript𝑢4u_{3}u_{4}italic_u start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT we obtain a K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e, again a contradiction.∎

In this paper, we progress towards Problem 4,tackling the casewhen the underlying graph is a 3-tree.Note that planar 3-trees are not contained in the classof K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e minor free graphs.Indeed, the K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e is itself a planar 3-tree, and by adding new vertices, we can obtain an infinite family of planar 3-trees with K5esubscript𝐾5𝑒K_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e as a minor.

Theorem 8.

IfG𝐺Gitalic_G is a planar digraph, with at least one dicycle, whose underlying graph is a planar 3-tree, thenν(G)=g(G)𝜈𝐺𝑔𝐺\nu(G)=g(G)italic_ν ( italic_G ) = italic_g ( italic_G ).

We finish this section with the next Proposition, whose proof is straightforward.

Proposition 9.

LetV3subscript𝑉3V_{3}italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT be the degree 3 vertices of a planar 3-treeG𝐺Gitalic_G. ThenV3subscript𝑉3V_{3}italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT is an independent set, andGV3𝐺subscript𝑉3G-V_{3}italic_G - italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT is also a planar 3-tree.

2 Proof of the main theorem

Given two dipathsCsuperscript𝐶C^{\prime}italic_C start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT andC′′superscript𝐶′′C^{\prime\prime}italic_C start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT,ifCC′′superscript𝐶superscript𝐶′′C^{\prime}\cup C^{\prime\prime}italic_C start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∪ italic_C start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT is a dipath or a dicycle,it is denoted byCC′′superscript𝐶superscript𝐶′′C^{\prime}\cdot C^{\prime\prime}italic_C start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⋅ italic_C start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT.For a pair of vertices{a,b}𝑎𝑏\{a,b\}{ italic_a , italic_b } in a dicycleC𝐶Citalic_C,letCsuperscript𝐶C^{\prime}italic_C start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT andC′′superscript𝐶′′C^{\prime\prime}italic_C start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT be the dipathssuch thatC=CC′′𝐶superscript𝐶superscript𝐶′′C=C^{\prime}\cdot C^{\prime\prime}italic_C = italic_C start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⋅ italic_C start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT andV(C)V(C′′)={a,b}𝑉superscript𝐶𝑉superscript𝐶′′𝑎𝑏V(C^{\prime})\cap V(C^{\prime\prime})=\{a,b\}italic_V ( italic_C start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∩ italic_V ( italic_C start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) = { italic_a , italic_b }.We refer to these dipaths as the ab𝑎𝑏abitalic_a italic_b-parts ofC𝐶Citalic_C.Moreover, we can extend this notation and define,for a triple of vertices{a,b,c}𝑎𝑏𝑐\{a,b,c\}{ italic_a , italic_b , italic_c }in a dicycleC𝐶Citalic_C, the abc𝑎𝑏𝑐abcitalic_a italic_b italic_c-parts ofC𝐶Citalic_C;and, when the context is clear, we denote by Cabsubscript𝐶𝑎𝑏C_{ab}italic_C start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT, Cbcsubscript𝐶𝑏𝑐C_{bc}italic_C start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT, and Cacsubscript𝐶𝑎𝑐C_{ac}italic_C start_POSTSUBSCRIPT italic_a italic_c end_POSTSUBSCRIPT the correspondingabc𝑎𝑏𝑐abcitalic_a italic_b italic_c-parts ofC𝐶Citalic_C.

A ditriangle in a digraph is a dicycle of size 3.A graph is called chordal if every induced cyclehas size 3.We begin by showing the next useful property.

Proposition 10.

LetG𝐺Gitalic_G be a digraph whose underlying graph is a planar 3-tree. IfG𝐺Gitalic_G contains at least a dicycle, thenG𝐺Gitalic_G contains a ditriangle.

Proof.

LetC𝐶Citalic_C be a dicycle inG𝐺Gitalic_G with minimum length.Suppose by contradiction that|C|4𝐶4|C|\geq 4| italic_C | ≥ 4.As the underlying graph ofG𝐺Gitalic_G is a chordal graph [4],C𝐶Citalic_C contains a chord, sayab𝑎𝑏abitalic_a italic_b.LetC1subscript𝐶1C_{1}italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT andC2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be the ab𝑎𝑏abitalic_a italic_b-parts of C𝐶Citalic_C.Without loss of generality, suppose thatC1subscript𝐶1C_{1}italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT starts ata𝑎aitalic_a and end atb𝑏bitalic_b.Then eitherabC1𝑎𝑏subscript𝐶1ab\cdot C_{1}italic_a italic_b ⋅ italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT orbaC2𝑏𝑎subscript𝐶2ba\cdot C_{2}italic_b italic_a ⋅ italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT isis a dicycle inG𝐺Gitalic_G with length less thanC𝐶Citalic_C, a contradiction.∎

We are now ready to prove our main theorem.A separator in a connected graph is a subset of vertices whose removal disconnects the graph.We sometimes abuse notation and we refer to the set of vertices of the corresponding nodes of a ditriangle in the underlying graph with the same term.

See 8

Proof.

For the case when g(G)=2𝑔𝐺2g(G)=2italic_g ( italic_G ) = 2 see Remark 13.So we may assume, by Proposition 10, thatg(G)=3𝑔𝐺3g(G)=3italic_g ( italic_G ) = 3.We will show, by induction onn𝑛nitalic_n, that G𝐺Gitalic_G has a packing of size 3.Ifn=3𝑛3n=3italic_n = 3, thenG𝐺Gitalic_G is a ditriangle, and the set that consists on the three arcs ofG𝐺Gitalic_G is a packing of size 3.Suppose now thatn>3𝑛3n>3italic_n > 3. We divide the rest of the proof in two cases.

Case 1:

There exists a ditriangle in G𝐺Gitalic_G that is a separator (in the underlying graph), sayabc𝑎𝑏𝑐abcitalic_a italic_b italic_c.

LetG1subscript𝐺1G_{1}italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT andG2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be the digraphs whose underlying graphs are planar 3-trees andV(G1)V(G2)={a,b,c}𝑉subscript𝐺1𝑉subscript𝐺2𝑎𝑏𝑐V(G_{1})\cap V(G_{2})=\{a,b,c\}italic_V ( italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ∩ italic_V ( italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = { italic_a , italic_b , italic_c }.By induction hypothesis,G1subscript𝐺1G_{1}italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT has a packing{T1,T2,T3}subscript𝑇1subscript𝑇2subscript𝑇3\{T_{1},T_{2},T_{3}\}{ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT }andG2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT has a packing{T1,T2,T3}subscriptsuperscript𝑇1subscriptsuperscript𝑇2subscriptsuperscript𝑇3\{T^{\prime}_{1},T^{\prime}_{2},T^{\prime}_{3}\}{ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT }.We may assume, without loss of generality, thatT1T1={ab}subscript𝑇1subscriptsuperscript𝑇1𝑎𝑏T_{1}\cap T^{\prime}_{1}=\{ab\}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = { italic_a italic_b },T2T2={bc}subscript𝑇2subscriptsuperscript𝑇2𝑏𝑐T_{2}\cap T^{\prime}_{2}=\{bc\}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = { italic_b italic_c } andT3T3={ac}subscript𝑇3subscriptsuperscript𝑇3𝑎𝑐T_{3}\cap T^{\prime}_{3}=\{ac\}italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = { italic_a italic_c }. We will show that{T1T1,T2T2,T3T3}subscript𝑇1subscriptsuperscript𝑇1subscript𝑇2subscriptsuperscript𝑇2subscript𝑇3subscriptsuperscript𝑇3\{T_{1}\cup T^{\prime}_{1},T_{2}\cup T^{\prime}_{2},T_{3}\cup T^{\prime}_{3}\}{ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∪ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∪ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT } is a packing ofG𝐺Gitalic_G.LetC𝐶Citalic_C be a dicycle inG𝐺Gitalic_G. If eitherV(C)V(G1)𝑉𝐶𝑉subscript𝐺1V(C)\subseteq V(G_{1})italic_V ( italic_C ) ⊆ italic_V ( italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) orV(C)V(G2)𝑉𝐶𝑉subscript𝐺2V(C)\subseteq V(G_{2})italic_V ( italic_C ) ⊆ italic_V ( italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), then we are done.Hence, we may assume thatV(C)V(G1)𝑉𝐶𝑉subscript𝐺1V(C)\cap V(G_{1})\neq\emptysetitalic_V ( italic_C ) ∩ italic_V ( italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ≠ ∅andV(C)V(G2)𝑉𝐶𝑉subscript𝐺2V(C)\cap V(G_{2})\neq\emptysetitalic_V ( italic_C ) ∩ italic_V ( italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ≠ ∅.This implies that|V(C){a,b,c}|2𝑉𝐶𝑎𝑏𝑐2{|V(C)\cap\{a,b,c\}|\geq 2}| italic_V ( italic_C ) ∩ { italic_a , italic_b , italic_c } | ≥ 2.

First suppose that|V(C){a,b,c}|=2𝑉𝐶𝑎𝑏𝑐2|V(C)\cap\{a,b,c\}|=2| italic_V ( italic_C ) ∩ { italic_a , italic_b , italic_c } | = 2,and, without loss of generality, thatV(C){a,b,c}={a,b}𝑉𝐶𝑎𝑏𝑐𝑎𝑏V(C)\cap\{a,b,c\}=\{a,b\}italic_V ( italic_C ) ∩ { italic_a , italic_b , italic_c } = { italic_a , italic_b }.LetC1subscript𝐶1C_{1}italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT andC2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be the twoab𝑎𝑏abitalic_a italic_b-parts ofC𝐶Citalic_C,with V(C1)V(G1)𝑉subscript𝐶1𝑉subscript𝐺1V(C_{1})\subseteq V(G_{1})italic_V ( italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ⊆ italic_V ( italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) andV(C2)V(G2)𝑉subscript𝐶2𝑉subscript𝐺2V(C_{2})\subseteq V(G_{2})italic_V ( italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⊆ italic_V ( italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).Suppose without loss of generalitythatC1subscript𝐶1C_{1}italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT starts at a𝑎aitalic_a and ends at b𝑏bitalic_b.Note thatC1bcasubscript𝐶1𝑏𝑐𝑎C_{1}\cdot bcaitalic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⋅ italic_b italic_c italic_a is a dicycleinG1subscript𝐺1G_{1}italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and thatC2absubscript𝐶2𝑎𝑏C_{2}\cdot abitalic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⋅ italic_a italic_b is a dicycle inG2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.Hence,C1T1subscript𝐶1subscript𝑇1C_{1}\cap T_{1}\neq\emptysetitalic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≠ ∅andC2T2,C2T3subscript𝐶2subscriptsuperscript𝑇2subscript𝐶2subscriptsuperscript𝑇3C_{2}\cap T^{\prime}_{2},C_{2}\cap T^{\prime}_{3}\neq\emptysetitalic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≠ ∅,and we are done(Figure 2(a𝑎aitalic_a)).

Now suppose that|V(C){a,b,c}|=3𝑉𝐶𝑎𝑏𝑐3|V(C)\cap\{a,b,c\}|=3| italic_V ( italic_C ) ∩ { italic_a , italic_b , italic_c } | = 3.First suppose thatthe dipath from a𝑎aitalic_a to c𝑐citalic_c in C𝐶Citalic_C contains b𝑏bitalic_b.LetCab,Cbc,Ccasubscript𝐶𝑎𝑏subscript𝐶𝑏𝑐subscript𝐶𝑐𝑎C_{ab},C_{bc},C_{ca}italic_C start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_c italic_a end_POSTSUBSCRIPT be the correspondingabc𝑎𝑏𝑐abcitalic_a italic_b italic_c-partsofC𝐶Citalic_C. Without loss of generality, we may assumethatV(Cab)V(G1)𝑉subscript𝐶𝑎𝑏𝑉subscript𝐺1V(C_{ab})\subseteq V(G_{1})italic_V ( italic_C start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT ) ⊆ italic_V ( italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) andV(Cbc),V(Cca)V(G2)𝑉subscript𝐶𝑏𝑐𝑉subscript𝐶𝑐𝑎𝑉subscript𝐺2V(C_{bc}),V(C_{ca})\subseteq V(G_{2})italic_V ( italic_C start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT ) , italic_V ( italic_C start_POSTSUBSCRIPT italic_c italic_a end_POSTSUBSCRIPT ) ⊆ italic_V ( italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).Note thatCabbcasubscript𝐶𝑎𝑏𝑏𝑐𝑎C_{ab}\cdot bcaitalic_C start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT ⋅ italic_b italic_c italic_a is a dicycleinG1subscript𝐺1G_{1}italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and thatCbcCcaabsubscript𝐶𝑏𝑐subscript𝐶𝑐𝑎𝑎𝑏C_{bc}\cdot C_{ca}\cdot abitalic_C start_POSTSUBSCRIPT italic_b italic_c end_POSTSUBSCRIPT ⋅ italic_C start_POSTSUBSCRIPT italic_c italic_a end_POSTSUBSCRIPT ⋅ italic_a italic_b is a dicycle inG2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.Hence,C1T1subscript𝐶1subscript𝑇1C_{1}\cap T_{1}\neq\emptysetitalic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≠ ∅andC2T2,C2T3subscript𝐶2subscriptsuperscript𝑇2subscript𝐶2subscriptsuperscript𝑇3C_{2}\cap T^{\prime}_{2},C_{2}\cap T^{\prime}_{3}\neq\emptysetitalic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≠ ∅and we are done(Figure 2(b𝑏bitalic_b)).

Now suppose thatthe dipath from a𝑎aitalic_a to b𝑏bitalic_b in C𝐶Citalic_C contains c𝑐citalic_c.LetCcb,Cba,Cacsubscript𝐶𝑐𝑏subscript𝐶𝑏𝑎subscript𝐶𝑎𝑐C_{cb},C_{ba},C_{ac}italic_C start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_b italic_a end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_a italic_c end_POSTSUBSCRIPT be the correspondingcba𝑐𝑏𝑎cbaitalic_c italic_b italic_a-partsofC𝐶Citalic_C. Without loss of generality, we may assumethatV(Cba)V(G1)𝑉subscript𝐶𝑏𝑎𝑉subscript𝐺1V(C_{ba})\subseteq V(G_{1})italic_V ( italic_C start_POSTSUBSCRIPT italic_b italic_a end_POSTSUBSCRIPT ) ⊆ italic_V ( italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) andV(Cac),V(Ccb)V(G2)𝑉subscript𝐶𝑎𝑐𝑉subscript𝐶𝑐𝑏𝑉subscript𝐺2V(C_{ac}),V(C_{cb})\subseteq V(G_{2})italic_V ( italic_C start_POSTSUBSCRIPT italic_a italic_c end_POSTSUBSCRIPT ) , italic_V ( italic_C start_POSTSUBSCRIPT italic_c italic_b end_POSTSUBSCRIPT ) ⊆ italic_V ( italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).Note thatCabbasubscript𝐶𝑎𝑏𝑏𝑎C_{ab}\cdot baitalic_C start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT ⋅ italic_b italic_a is a dicycleinG1subscript𝐺1G_{1}italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and thatCaccasubscript𝐶𝑎𝑐𝑐𝑎C_{ac}\cdot caitalic_C start_POSTSUBSCRIPT italic_a italic_c end_POSTSUBSCRIPT ⋅ italic_c italic_a is a dicycle inG2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.Hence,C1T2,T3subscript𝐶1subscript𝑇2subscript𝑇3C_{1}\cap T_{2},T_{3}\neq\emptysetitalic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≠ ∅andC2T1subscript𝐶2subscript𝑇1C_{2}\cap T_{1}\neq\emptysetitalic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≠ ∅ and we are done(Figure 2(c𝑐citalic_c)).

Towards a conjecture of Woodall for partial 3-trees (5)

a

Towards a conjecture of Woodall for partial 3-trees (6)

b

Towards a conjecture of Woodall for partial 3-trees (7)

c

Case 2:

There exists no ditriangle in G𝐺Gitalic_G that is a separator (in the underlying graph).

LetG=GV3superscript𝐺𝐺subscript𝑉3G^{\prime}=G-V_{3}italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_G - italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. In this case, we letT1=E(G)subscript𝑇1𝐸superscript𝐺T_{1}=E(G^{\prime})italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_E ( italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )and defineT2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT andT3subscript𝑇3T_{3}italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT according to the next rule.LetuV3𝑢subscript𝑉3u\in V_{3}italic_u ∈ italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and suppose that the neighbors of u𝑢uitalic_u in the underlying 3-tree are a,b𝑎𝑏a,bitalic_a , italic_b and c𝑐citalic_c.Note that{a,b,c}𝑎𝑏𝑐\{a,b,c\}{ italic_a , italic_b , italic_c } does not induce a ditriangle in G𝐺Gitalic_G.Indeed, otherwiseabc𝑎𝑏𝑐abcitalic_a italic_b italic_c is a separator inG𝐺Gitalic_G.Thus, we may assume thatab,bc,acE(G)𝑎𝑏𝑏𝑐𝑎𝑐𝐸𝐺ab,bc,ac\in E(G)italic_a italic_b , italic_b italic_c , italic_a italic_c ∈ italic_E ( italic_G ).If the digraph induced by {a,b,c}𝑎𝑏𝑐\{a,b,c\}{ italic_a , italic_b , italic_c } has no ditriangle, then we addall incident arcs ofu𝑢uitalic_u toT1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.Otherwise, ifxyu𝑥𝑦𝑢xyuitalic_x italic_y italic_u is a ditriangle, withx,y{a,b,c}𝑥𝑦𝑎𝑏𝑐x,y\in\{a,b,c\}italic_x , italic_y ∈ { italic_a , italic_b , italic_c }, then we addyu𝑦𝑢yuitalic_y italic_u toT2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT andux𝑢𝑥uxitalic_u italic_x toT3subscript𝑇3T_{3}italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.Any other arc is added toT1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (Figure 3).

Towards a conjecture of Woodall for partial 3-trees (8)

Towards a conjecture of Woodall for partial 3-trees (9)

Towards a conjecture of Woodall for partial 3-trees (10)

Towards a conjecture of Woodall for partial 3-trees (11)

Towards a conjecture of Woodall for partial 3-trees (12)

Towards a conjecture of Woodall for partial 3-trees (13)

Towards a conjecture of Woodall for partial 3-trees (14)

Towards a conjecture of Woodall for partial 3-trees (15)

We will show that{T1,T2,T3}subscript𝑇1subscript𝑇2subscript𝑇3\{T_{1},T_{2},T_{3}\}{ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT } is a packing ofG𝐺Gitalic_G.Note that, by Proposition 9, the underlying graph ofGsuperscript𝐺G^{\prime}italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPTis a planar 3-tree.Thus, by Proposition 10, Gsuperscript𝐺G^{\prime}italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT has no dicycles; otherwise, asn>4𝑛4n>4italic_n > 4, we will have a ditriangle inGsuperscript𝐺G^{\prime}italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, which is a separator in the underlying graph ofG𝐺Gitalic_G.LetC𝐶Citalic_C be a dicycle inG𝐺Gitalic_G. By the previous observation,V(C)V3𝑉𝐶subscript𝑉3V(C)\cap V_{3}\neq\emptysetitalic_V ( italic_C ) ∩ italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≠ ∅.

For eachuV3V(C)𝑢subscript𝑉3𝑉𝐶u\in V_{3}\cap V(C)italic_u ∈ italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∩ italic_V ( italic_C ), leteusubscript𝑒𝑢e_{u}italic_e start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT be the arc whose endsare neighbors ofu𝑢uitalic_u inC𝐶Citalic_C.LetD=(CV3){eu:uV3}.𝐷𝐶subscript𝑉3conditional-setsubscript𝑒𝑢𝑢subscript𝑉3D=(C-V_{3})\cup\{e_{u}:u\in V_{3}\}.italic_D = ( italic_C - italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) ∪ { italic_e start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT : italic_u ∈ italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT } .AsV(D)V(G)𝑉𝐷𝑉superscript𝐺V(D)\subseteq V(G^{\prime})italic_V ( italic_D ) ⊆ italic_V ( italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ),D𝐷Ditalic_D is not a dicycle by Proposition 10.Hence, there existsuV3V(C)𝑢subscript𝑉3𝑉𝐶u\in V_{3}\cap V(C)italic_u ∈ italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∩ italic_V ( italic_C ) such thateuusubscript𝑒𝑢𝑢e_{u}\cdot uitalic_e start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ⋅ italic_u is a ditriangle.Thus, by the definition of T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and T3subscript𝑇3T_{3}italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT,CT2𝐶subscript𝑇2C\cap T_{2}\neq\emptysetitalic_C ∩ italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≠ ∅ andCT3𝐶subscript𝑇3C\cap T_{3}\neq\emptysetitalic_C ∩ italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ≠ ∅.IfE(C)E(G)𝐸𝐶𝐸superscript𝐺E(C)\cap E(G^{\prime})\neq\emptysetitalic_E ( italic_C ) ∩ italic_E ( italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≠ ∅, then we are done,as every arc ofGsuperscript𝐺G^{\prime}italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is inT1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.Thus, let us assume thatE(C)E(GG)𝐸𝐶𝐸𝐺superscript𝐺E(C)\subseteq E(G\setminus G^{\prime})italic_E ( italic_C ) ⊆ italic_E ( italic_G ∖ italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )and suppose by contradiction thatCT1=𝐶subscript𝑇1C\cap T_{1}=\emptysetitalic_C ∩ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ∅.This implies, by the definition of T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and T3subscript𝑇3T_{3}italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, thatC𝐶Citalic_C consists of an even sequence of arcs that alternates between arcs in T2subscript𝑇2T_{2}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and T3subscript𝑇3T_{3}italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.But in this case,D𝐷Ditalic_D is a dicycle inGsuperscript𝐺G^{\prime}italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, a contradiction.

This finishes the proof of Theorem 8.∎

3 Final remarks and open problems

In this paper, we showed Woodall’s conjecture (Conjecture 2) for directed graphs whose underlying graph is a planar 3-tree. This result is a progress towards proving Woodall’s conjecture for digraphs whose underlying graph has bounded treewidth. Particularly, the conjecture when the graph has treewidth at most three (a partial 3-tree), is still open.As Woodall’s conjecture seems difficult to tackle in its current form, we can define, for everyk𝑘k\in\mathbb{N}italic_k ∈ blackboard_N withk2𝑘2k\geq 2italic_k ≥ 2, the following families of conjectures111see also http://www.openproblemgarden.org/op/woodalls_conjecture.

Conjecture 11 (Conjecture WC=(𝐤)𝑊subscript𝐶𝐤WC_{=}\mathbf{(k)}italic_W italic_C start_POSTSUBSCRIPT = end_POSTSUBSCRIPT ( bold_k )).

Let G𝐺Gitalic_G be a planar digraph. If g(G)=k𝑔𝐺𝑘g(G)=kitalic_g ( italic_G ) = italic_k then ν(G)=k𝜈𝐺𝑘\nu(G)=kitalic_ν ( italic_G ) = italic_k.

Conjecture 12 (Conjecture WC(𝐤)𝑊subscript𝐶𝐤WC_{\geq}\mathbf{(k)}italic_W italic_C start_POSTSUBSCRIPT ≥ end_POSTSUBSCRIPT ( bold_k )).

Let G𝐺Gitalic_G be a planar digraph. If g(G)k𝑔𝐺𝑘g(G)\geq kitalic_g ( italic_G ) ≥ italic_k then ν(G)k𝜈𝐺𝑘\nu(G)\geq kitalic_ν ( italic_G ) ≥ italic_k.

Note that if we solve WC=(𝐤)𝑊subscript𝐶𝐤WC_{=}\mathbf{(k)}italic_W italic_C start_POSTSUBSCRIPT = end_POSTSUBSCRIPT ( bold_k ) for any k𝑘kitalic_k, thenWoodall’s conjecture holds.Also, note that a solution for WC(𝐤)𝑊subscript𝐶𝐤WC_{\geq}\mathbf{(k)}italic_W italic_C start_POSTSUBSCRIPT ≥ end_POSTSUBSCRIPT ( bold_k )implies a solution for WC=(𝐤)𝑊subscript𝐶𝐤WC_{=}\mathbf{(k)}italic_W italic_C start_POSTSUBSCRIPT = end_POSTSUBSCRIPT ( bold_k ).Indeed, if that is the case, then kν(G)g(G)=k𝑘𝜈𝐺𝑔𝐺𝑘k\leq\nu(G)\leq g(G)=kitalic_k ≤ italic_ν ( italic_G ) ≤ italic_g ( italic_G ) = italic_k.Conjecture WC(𝟐)𝑊subscript𝐶2WC_{\geq}\mathbf{(2)}italic_W italic_C start_POSTSUBSCRIPT ≥ end_POSTSUBSCRIPT ( bold_2 ) is equivalent to the problemof decomposing the arcs of a digraph into two acyclic digraphs.There is a folklore solution to this problem: consider an arbitrary sequence of the nodes and divide the set of arcs of the digraph into two sets, whether it consists on an increasing or decreasing pair according to the sequence.

Remark 13.

The set of arcs of any digraph G𝐺Gitalic_G can be decomposed into twoacyclic digraphs.

Extending this result, Wood prove that any digraph can be decomposed in an arbitrary number of acyclic digraphs. Moreover, any such digraph has small outdegree proportional to its original outdegree [11].However, the families of conjectures given here are more difficult to prove, as they ask to decomposethe arcs of a digraph into k𝑘kitalic_k acyclic digraphs, but with the extra condition that the union of any k1𝑘1k-1italic_k - 1 of this digraphs is also acyclic.

No known result for Conjecture WC(𝟑)𝑊subscript𝐶3WC_{\geq}\mathbf{(3)}italic_W italic_C start_POSTSUBSCRIPT ≥ end_POSTSUBSCRIPT ( bold_3 ) is known.As we mention before, Conjecture WC(𝟐)𝑊subscript𝐶2WC_{\geq}\mathbf{(2)}italic_W italic_C start_POSTSUBSCRIPT ≥ end_POSTSUBSCRIPT ( bold_2 ),and thus Conjecture WC=(𝟐)𝑊subscript𝐶2WC_{=}\mathbf{(2)}italic_W italic_C start_POSTSUBSCRIPT = end_POSTSUBSCRIPT ( bold_2 ), are already settled.As we can see next, we can answer Conjecture WC=(𝟑)𝑊subscript𝐶3WC_{=}\mathbf{(3)}italic_W italic_C start_POSTSUBSCRIPT = end_POSTSUBSCRIPT ( bold_3 ) for partial 3-trees.

Corollary 14.

Let G𝐺Gitalic_G be a planar digraph with g(G)=3𝑔𝐺3g(G)=3italic_g ( italic_G ) = 3.If the underlying graph of G𝐺Gitalic_G is a partial 3-tree, then ν(G)=g(G)𝜈𝐺𝑔𝐺\nu(G)=g(G)italic_ν ( italic_G ) = italic_g ( italic_G ).

Proof.

We direct any pair of vertices not in E(G)𝐸𝐺E(G)italic_E ( italic_G )arbitrarily, creating a digraph Gsuperscript𝐺G^{\prime}italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT whose underlying graph is a planar 3-tree.As we did not create any antiparallel arc, we have that g(G)=g(G)=3𝑔superscript𝐺𝑔𝐺3g(G^{\prime})=g(G)=3italic_g ( italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_g ( italic_G ) = 3.By Theorem 8, ν(G)=g(G)𝜈superscript𝐺𝑔superscript𝐺\nu(G^{\prime})=g(G^{\prime})italic_ν ( italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_g ( italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ).As any dicycle in G𝐺Gitalic_G exists also in Gsuperscript𝐺G^{\prime}italic_G start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, we have ν(G)=g(G)𝜈𝐺𝑔𝐺\nu(G)=g(G)italic_ν ( italic_G ) = italic_g ( italic_G ) as we wanted.∎

References

  • [1]S.Arnborg and A.Proskurowski, Linear time algorithms for NP-hardproblems restricted to partial k-trees, Discrete Applied Mathematics23 (1989), no.1, 11–24.
  • [2]S.Arnborg, A.Proskurowski, and D.G. Corneil, Forbidden minorscharacterization of partial 3-trees, Discrete Mathematics 80(1990), no.1, 1–19.
  • [3]H.L. Bodlaender, Dynamic programming on graphs with bounded treewidth,Automata, Languages and Programming, Springer, 1988, pp.105–118.
  • [4] , A partial k𝑘kitalic_k-arboretum of graphs with bounded treewidth,Theoretical Computer Science 209 (1998), no.1, 1–45.
  • [5]A.Brandstädt, V.B. Le, and J.P. Spinrad, Graph classes: A survey,Society for Industrial and Applied Mathematics, 1999.
  • [6]P.Feofiloff and D.Younger, Directed cut transversal packing forsource-sink connected graphs, Combinatorica 7 (1987), 255–263.
  • [7]O.Lee and Y.Wakabayashi, Note on a min-max conjecture of woodall,Journal of Graph Theory 38 (2001), no.1, 36–41.
  • [8]O.Lee and A.Williams, Packing dicycle covers in planar graphs with noK5esubscript𝐾5𝑒{K}_{5}-eitalic_K start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT - italic_e minor, LATIN 2006: Theoretical Informatics, 7th Latin AmericanSymposium, Valdivia, Chile, March 20-24, 2006, Proceedings, Lecture Notes inComputer Science, vol. 3887, Springer, 2006, pp.677–688.
  • [9]N.Robertson and P.D. Seymour, Graph minors. IV. Tree-width andwell-quasi-ordering, Journal of Combinatorial Theory, Series B 48(1990), no.2, 227–254.
  • [10]A.Schrijver, Min-max relations for directed graphs, Bonn Workshop onCombinatorial Optimization, North-Holland Mathematics Studies, vol.66,North-Holland, 1982, pp.261–280.
  • [11]D.R. Wood, Bounded degree acyclic decompositions of digraphs, Journalof Combinatorial Theory, Series B 90 (2004), no.2, 309–313.
  • [12]D.R. Woodall, Menger and könig systems, Theory and Applications ofGraphs (Berlin, Heidelberg), Springer Berlin Heidelberg, 1978, pp.620–635.
Towards a conjecture of Woodall for partial 3-trees (2024)

References

Top Articles
Beacon Schneider Dearborn County
Vindy.com Obituaries
Funny Roblox Id Codes 2023
Www.mytotalrewards/Rtx
San Angelo, Texas: eine Oase für Kunstliebhaber
Golden Abyss - Chapter 5 - Lunar_Angel
Www.paystubportal.com/7-11 Login
Steamy Afternoon With Handsome Fernando
fltimes.com | Finger Lakes Times
Detroit Lions 50 50
18443168434
Newgate Honda
Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
978-0137606801
Nwi Arrests Lake County
Missed Connections Dayton Ohio
Justified Official Series Trailer
London Ups Store
Committees Of Correspondence | Encyclopedia.com
Jinx Chapter 24: Release Date, Spoilers & Where To Read - OtakuKart
How Much You Should Be Tipping For Beauty Services - American Beauty Institute
How to Create Your Very Own Crossword Puzzle
Apply for a credit card
Unforeseen Drama: The Tower of Terror’s Mysterious Closure at Walt Disney World
Ups Print Store Near Me
How Taraswrld Leaks Exposed the Dark Side of TikTok Fame
University Of Michigan Paging System
Dashboard Unt
Access a Shared Resource | Computing for Arts + Sciences
2023 Ford Bronco Raptor for sale - Dallas, TX - craigslist
Healthy Kaiserpermanente Org Sign On
Restored Republic
Progressbook Newark
Lawrence Ks Police Scanner
3473372961
Landing Page Winn Dixie
Everstart Jump Starter Manual Pdf
Hypixel Skyblock Dyes
Senior Houses For Sale Near Me
Flashscore.com Live Football Scores Livescore
Ksu Sturgis Library
Trivago Myrtle Beach Hotels
Thotsbook Com
Funkin' on the Heights
Caesars Rewards Loyalty Program Review [Previously Total Rewards]
Marcel Boom X
Www Pig11 Net
Ty Glass Sentenced
Michaelangelo's Monkey Junction
Game Akin To Bingo Nyt
Ranking 134 college football teams after Week 1, from Georgia to Temple
Latest Posts
Article information

Author: Kareem Mueller DO

Last Updated:

Views: 5557

Rating: 4.6 / 5 (46 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Kareem Mueller DO

Birthday: 1997-01-04

Address: Apt. 156 12935 Runolfsdottir Mission, Greenfort, MN 74384-6749

Phone: +16704982844747

Job: Corporate Administration Planner

Hobby: Mountain biking, Jewelry making, Stone skipping, Lacemaking, Knife making, Scrapbooking, Letterboxing

Introduction: My name is Kareem Mueller DO, I am a vivacious, super, thoughtful, excited, handsome, beautiful, combative person who loves writing and wants to share my knowledge and understanding with you.